
01
10

00
10

11
00

10
10

01
01

01
00

10
10

10
10

11
01

10
10

1001010101011011010100

01
00

10
10

10
10

11
01

10
10

10
01

01
10

01
01

0

10
11

01
01

00
10

11
00

10
10

01
01

00
10

11
00

10
10

01
01

00
10

11
00

10
10

11
00

10
10

01
10

00
10

11
00

10
10

01
01

01
00

10
10

10
10

11
01

10
10

11

$

Connecting
Software Delivery
to Business Value
The Ultimate Guide to
Software Delivery Management

MICHAEL BALDANI BRIAN DAWSON

Connecting Software

 Delivery

to Business Value

The Ultimate Guide to Software

Delivery Management

Michael Baldani and Brian Dawson

Published by

Connecting Software Delivery to Business Value
The Ultimate Guide to Software Delivery Management

By Michael Baldani and Brian Dawson

Published by

Hurwitz & Associates, LLC

One Mifflin Place

Suite 400

Cambridge, MA 02138

Copyright © 2020 by Hurwitz & Associates, LLC

Notice of rights: All rights reserved. No part of this book may be

reproduced or transmitted in any form or by any means without

prior written permission from the Publisher.

Notice of liability: The authors have made every effort to ensure

the accuracy of the information within this book was correct at

time of publication. The authors do not assume and hereby dis-

claim any liability to any party for any loss, damage, or disruption

caused by errors or omissions, whether such errors or omissions re-

sult from accident, negligence, or any other cause.

Trademarks: CloudBees and CloudBees DevOptics are registered

trademarks and CloudBees Core, CloudBees CodeShip, CloudBees

Jenkins Enterprise, CloudBees Jenkins Platform and DEV@cloud

are trademarks of CloudBees. Other product or brand names may

be trademarks or registered trademarks of their respective holders.

ISBN: 978-1-949260-14-4

Printed in the USA by Hurwitz & Associates, LLC

www.hurwitz.com

Acknowledgments

This book has been a collaboration between the authors,

publisher and editors. Some of the team members that

helped make this book possible are:

Managing Editors:

Judith Hurwitz, Hurwitz & Associates

Daniel Kirsch, Hurwitz & Associates

Kiley Nichols, CloudBees, Inc.

Cover and Graphic Design: Kate Myers

Layout and Interior Design: Caroline Wilson

 iii

Table of Contents

About the Authors .. v

Chapter 1

The Challenges of Modern Software Practices ………………........ 6
The current state of modern software development

Increasing the value of DevOps

Expanding DevOps culture across the organization

Chapter 2

Understanding Software Delivery Management 16
The need for a new approach to managing the software delivery lifecycle

Defining Software Delivery Management

Removing silos with Software Delivery Management

Understanding the goals of a Software Delivery Management framework

The four pillars of Software Delivery Management

Chapter 3

Pillar 1: Common Data …………………….…………....………………...... 23
The need for a common data model

Defining a common data model

Creating a common data model

Understanding why a common data model is a core requirement

Chapter 4

Pillar 2: Universal Insights ………………………………………………..... 29
Understanding the needs of different teams

Defining universal insights

The power of universal insights

How universal insights drives business success

Chapter 5

Pillar 3: Connected Business Processes …………………………….. 34
The importance of aligning business processes

Connecting business processes to meet customer expectations

The business value of connected and aligned processes

Chapter 6

Pillar 4: All Functions Collaborating ………………………………….. 38
The journey to collaboration

The business imperative of collaboration

Creating positive customer outcomes

 iv

Chapter 7

Five Steps to Establishing a Software Delivery Management

Framework ………………………………………………………………………... 42
Step 1: Align teams on software delivery goals

Step 2: Build a common data framework that can adapt to business needs

Step 3: Giving all teams the insight they need

Step 4: Understanding and connecting processes across the business

Step 5: Drive collaboration across the business

Chapter 8

Best Practices for Successful Software Delivery …………….…. 47
Best practices for change management

Best practices for continuous improvement

 v

About the Authors

Michael Baldani: Michael is a senior product marketing

manager at CloudBees. He has spent the last 20 years in

software marketing, and has recently been promoting and

writing about data management, value stream manage-

ment and DevOps analytics solutions to help business

and engineering leaders overcome the challenges they

face in their daily role.

Brian Dawson: Brian is the director of product marketing

at CloudBees and a DevOps evangelist and practitioner

with a focus on agile, continuous integration (CI), con-

tinuous delivery (CD) and DevOps practices. He has over

25 years as a software professional in multiple domains

including quality assurance, engineering and manage-

ment, with a focus on optimization of software develop-

ment. Brian has led an agile transformation consulting

practice and helped many organizations implement CI,

CD and DevOps.

 6

Chapter 1

The Challenges of Modern
Software Practices

Inside

» Understanding the current state of software devel-
opment

» Decomposing monolithic applications
» Gaining more value from DevOps
» Speaking the same language across your business
» Collaborating across the business

Companies are increasingly defined by the quality and

functionality of their software. Software must have the

ability to drive productivity and efficiency while support-

ing a positive user experience and customer satisfaction.

The days when an organization could spend a year devel-

oping the next release of a product and introducing it to

the market are long gone. Market demands, from both the

customers and the competition, won’t give any company

the luxury of time.

Customers expect form and function - there is an expec-

tation that software will include the latest innovations,

to help them achieve the job at hand without getting in

the way. This expectation requires companies to contin-

ually improve the features, functionality and usability of

their software offerings. Relying on the success of yester-

day’s software offerings is dangerous. Nimble competi-

tors are quickly creating more compelling offerings, more

engaging experiences and software that solves custom-

ers’ pain points. To be successful, businesses need to con-

tinuously innovate and improve their customers’

 7

experience. Software has emerged as the fastest and most

efficient way of doing this.

In this chapter, we will discuss some of the most signifi-

cant changes in modern software practices along with the

growing challenges in modern software development.

The Current State of Modern
Software Development

Organizations have a wide variety of applications, rang-

ing from legacy applications deployed on-premise to mo-

bile, web, cloud, serverless and containerized apps. Over

the last several years, businesses have adopted new de-

velopment approaches to increase code quality, decrease

errors and speed the development process. Many of these

efforts have been focused on removing the barriers that

often separate teams in various areas – for example: de-

velopment, testing, operations and security.

Companies are increasingly adopting “cloud-first” initi-

atives, where new applications are developed, tested and

run in the cloud. The cloud of choice could be a virtual

private cloud or public cloud using one of the many op-

tions (Amazon Web Services, Microsoft Azure or Google

Cloud, to name a few). The cloud gives teams rapid access

to a scalable infrastructure with lower costs and labor.

The economic benefits of the cloud are undeniable. In

turn, a cloud-first approach requires a new model for

software development and delivery.

The growing adoption of the cloud also changes both the

development and deployment landscapes. In the case of

hybrid cloud environments, where applications are

hosted both on-premise and in the cloud, and/or multiple

public clouds are used, managing across these varied

 8

environments is challenging. Additionally, trying to

move large, monolithic applications to the cloud is diffi-

cult and expensive. These legacy applications, which

have many dependencies that are commonly poorly doc-

umented, were never developed with a distributed envi-

ronment in mind.

Applications anywhere

This new era of application development means that soft-

ware services can be developed and deployed virtually

anywhere. Businesses want to have the flexibility to de-

ploy applications on the platform or cloud that makes the

most sense from a performance and economic perspec-

tive. They might, for example, deploy software on edge

computing devices or on multiple cloud platforms, de-

pending on customer demand and local regulations.

An application framework designed for change

With customer expectations continually increasing, busi-

nesses must approach software development differently.

Adding a feature, improving interface design or enhanc-

ing security cannot require developers to fully redevelop

the application.

Microservices enable applications to be developed as ser-

vices linked together through lightweight interfaces

managed within containers. Each service can be devel-

oped and deployed by independent teams. The micro-

services approach allows organizations to update por-

tions of an application without requiring complex de-

pendency management, full regression testing or a big

bang deployment. In addition, services can be reused for

different applications. For example, there is no reason to

create a new authentication method for each application.

Instead, reuse the authentication microservice that has

already been tested and verified. If that microservice is

 9

updated, it can more easily be implemented across all of

the applications that utilize the service.

Operationalizing DevOps

In general, DevOps is a set of cultural principles focused

on aligning the entire company, or at least the IT organ-

ization, around the shared objective of delivering quality

software rapidly and reliably. The focus of DevOps is au-

tomation, efficiency and collaboration. Development no

longer throws code over the proverbial wall to operations.

Operations no longer throws it back when there is an is-

sue. Instead, in a DevOps culture, teams work together to

create quality software that is well-tuned for the environ-

ment where it will be deployed.

There are dozens of DevOps tools and software offerings,

but at its core, DevOps is more about culture. A single

tool, software package or simply moving to the cloud will

not enable DevOps. Instead, companies need buy-in from

every level of the organization.

The DevOps culture aligns well with the goals of success-

ful companies. The most obvious benefits are an increase

in the quality of software and faster delivery of new func-

tionality. Performance, usability and security errors are

identified earlier in the development process. In addi-

tion, taking advantage of automation helps to manage

complex distributed environments. Most importantly,

DevOps positions businesses to quickly respond to cus-

tomer feedback and changing market conditions at the

tactical level.

The emergence of DevSecOps

Despite the continued adoption of DevOps culture, some

organizations still view application security as a totally

 10

separate domain. Unfortunately, this means that security

might be implemented at the end of the DevOps process

as opposed to being embedded throughout the software

delivery lifecycle. Keeping application security as a siloed

activity can prove costly for two important reasons:

firstly, corporate and customer data may be exposed

through a breach, and secondly, releases can be delayed

by months if security wasn’t considered throughout the

development process.

A solution to the problems created with a “security as an

afterthought” approach is the practice of DevSecOps. In

brief, DevSecOps is the process of integrating security

into the software development process. DevSecOps be-

gins with a change in culture, founded in ongoing learn-

ing to raise security awareness throughout the IT organ-

ization. Security must be viewed as a team effort. In ad-

dition, the organization may identify security-savvy peo-

ple who can champion the change in the IT organization’s

approach to security. Security must not be thought of as

a roadblock, but instead a key enabler in meeting busi-

ness goals. In addition to cultural changes, tools can then

be used to automate security testing, detect vulnerabili-

ties early in the development process and even automat-

ically halt deployment of a release if problems are found.

Increasing the Value of DevOps

This modern approach to software development com-

bined with automation has helped some organizations

achieve continuous integration (CI) and continuous de-

livery (CD). Through increased communications built

into the expanding DevOps culture, organizations are ex-

periencing shared decision-making, business goals and

greater collaboration, which leads to effective CI/CD. Fi-

nally, organizations can start to eliminate the long back-

logs, slow development processes and manual and error-

 11

prone steps that prevent them from rapidly delivering re-

liable software - a key component to achieving the agility

necessary to respond to changing customer needs and

market conditions.

But DevOps is not perfect. While the development and

operations teams are communicating with each other,

they often focus on different criteria and different issues.

Logs and reports from development tools are meaningless

to the operations team. Likewise, the development teams

are not familiar with tools used by the operations team

nor with the data they produce.

Over the past several years, there has been a proliferation

of tools to help teams improve the quality of their soft-

ware practices. These tools have been designed to meet

specific DevOps team goals. For example, there are spe-

cific tools for bug resolution, continuous integration,

testing and performance management. DevOps organiza-

tions have put together complex toolchains that can be

made up of a dozen or more open source and proprietary

tools. Each of these tools has its own reporting function-

ality, its own interfaces and its own logging. There is no

standard DevOps language to help these tools communi-

cate with each other. The figure below shows an example

DevOps tool chain. Each step of the DevOps process has

its own tool(s).

 12

Figure 1-1: Example of a DevOps toolchain

The reality of the modern enterprise is that there are mul-

tiple teams, in functional groups with multiple technolo-

gies and in multiple business units, all using tools and

processes purpose-fit for their teams’ needs.

However, technology leaders then face a significant chal-

lenge: how do they integrate data and processes from

these disconnected tools and teams? It is not realistic to

have every participant in the Software Development Life

Cycle (SDLC) familiar with each tool. For example, devel-

opers do not need to know the intricacies of a company’s

business intelligence tool. However, developers can ben-

efit from the insights some of those tools provide. Simi-

larly, operations can benefit from insight into the devel-

opment work done within, for example, a continuous in-

tegration tool or testing tool.

Although it would make managing an environment eas-

ier, it is not always practical to have every team use the

same tools or same process. Teams are most efficient

when they can use the best tools for the job at hand.

 13

The biggest challenges with modern software develop-

ment stem from the fact that different teams are siloed

and using different tools. These challenges include:

▪ Lack of insight into the development process.

Managers are unable to quickly view the progress

of projects. They can gain some insight during

daily stand-up meetings, but managers must rely

on others to understand the status of a project.

Furthermore, identifying bottlenecks is difficult

because of a lack of visibility.

▪ Connecting software to business results. The

software organization is charged with developing,

deploying and improving software. However, to

be successful, the organization must tie their ef-

forts back to business objectives. Yet the value of

software is rarely tracked and developers seldom

get business insight into their work.

▪ Organizational structure bleeds into offerings.

Customers do not care about a company’s organ-

izational chart; however, disconnected processes

can manifest in disappointing offerings. Custom-

ers want software that works; they don’t want to

know that a failure occurred because of a specific

team. Therefore, teams from across functions

need to work together on the common goal of de-

livering excellent software.

Expanding DevOps Culture Across

the Organization

As we’ve discussed, DevOps is a culture-first movement

to help development and operations teams collaborate

more closely. While collaboration within the IT team is

 14

important, in order to thrive, businesses need to collabo-

rate across IT and business teams.

Organizational leadership is beginning to ask questions

that are hard to answer. Today they expect answers - an-

swers that can only be derived by gaining insights into

software delivery status. Gaining visibility within busi-

ness areas that previously didn’t have that visibility can

improve company results. The goal is to address opportu-

nities to improve customer satisfaction and ultimately

increase revenue. Some scenarios include:

▪ What if the marketing team could see the pro-

gress in the development of new software features

and product offerings? Wouldn’t it enable better

outcomes if the marketing team could plan and

align the timing of marketing campaigns with the

actual development process?

▪ What if customer success managers could provide

customers with real-time progress of feature re-

quests without the need to track down multiple

people within the development organization?

▪ What if organizations could connect software de-

velopment budget with business outcomes? Are

there KPIs that connect development with busi-

ness results? This would provide intelligence to

know what areas of software development are

truly delivering value, based on meaningful KPIs.

▪ How can technology leadership streamline pro-

cesses and gain insight into multiple projects

without needing managers to manually consoli-

date reports and spreadsheets?

To be successful, businesses need to increase customer

satisfaction. While moving from quarterly to weekly up-

dates may sound impressive, frequent updates don’t

 15

necessarily translate to business value. If teams are still

releasing poor quality software that users don’t want to

use, it doesn’t matter that they are releasing it more

quickly. What organizations really want is a connection

between the DevOps efforts and their business KPIs. This

has been difficult to achieve for most organizations due

to a lack of intelligent integration between software de-

livery processes, the tools used within it and actual busi-

ness outcomes.

A new way of managing software delivery is emerging to

help businesses automatically capture, integrate and cor-

relate disparate DevOps toolchain data and business

data. This new approach to managing the entire software

delivery life cycle is called Software Delivery Manage-

ment. This book is intended to help modern enterprises

quickly understand what Software Delivery Management

is all about. A Software Delivery Management practice

will enable software teams to leverage data from the

DevOps tools they are using and to boost visibility into

KPIs, enabling organizations to better manage both busi-

ness and product success, while also enabling better vis-

ibility and collaboration.

 16

Chapter 2

Understanding Software
Delivery Management

Inside

» Recognizing the need for Software Delivery

Management

» Understanding the goals of adopting a Software

Delivery Management framework

» Introducing the four fundamental pillars of Soft-

ware Delivery Management

» Explaining Software Delivery Management

Businesses are constantly changing and adjusting soft-

ware offerings based on the needs of a variety of constit-

uents. Many of these changes are incremental and barely

noticed by users. Continuous delivery and DevOps seek to

iteratively improve the user experience and add new

functionality more frequently. However, it’s imperative

this is done without getting in the way of users and po-

tentially driving them to choose other solutions. In this

chapter, we will talk about what Software Delivery Man-

agement is and why businesses are starting to adopt this

framework. In addition, we will introduce the four funda-

mental pillars needed to support a successful Software

Delivery Management practice.

The Need for a New Approach to Managing
the Software Delivery Lifecycle

Making frequent software updates to quickly respond to

changing customer needs and shifting market dynamics

is a drastic difference from waterfall development, where

 17

there are typically one or two major product version re-

leases a year. This new approach to software delivery cre-

ated the need for continuous improvement, meaning

small enhancements are made across each step of the

software delivery lifecycle, to incrementally deliver bet-

ter software, more frequently. This gets new functionality

into the hands of users more quickly and also reduces the

risk inherent in “big bang” releases.

Continuous integration (CI) and continuous delivery (CD)

have enabled successful development organizations to

quickly iterate on software and release frequent updates.

CI helps businesses to engage in continuous improve-

ment by having developers commit code more frequently.

Continuous delivery is the practice of keeping software in

a release-ready state at all times. CI/CD requires automa-

tion to assure quality, security and smoother deploy-

ments across the software delivery lifecycle. This ap-

proach gives businesses the ability to push reliable new

software updates more frequently.

When businesses shift to a continuous improvement

mode, teams from across the business need to operate on

the same cadence. Aligning upstream and downstream

functions (i.e. leadership, marketing, finance, sales, sup-

port) with development and operations, on a common set

of goals and expected outcomes, is critical for success.

How can marketing know when a major new release is

ready? How do business partners know when new product

enhancements are generally available? Even more im-

portantly, how do you connect development to customer

satisfaction, revenue and, ultimately, business success?

 18

Defining Software Delivery Management

Software Delivery Management is an emerging practice

that aims to help businesses and their cross-functional

teams better collaborate and align processes with soft-

ware development, while also connecting and measuring

development effort to business KPIs. Businesses have to

reimagine their approach to software delivery as a new

way to align teams (IT and non-IT teams alike) around the

software delivery process and, ultimately, business

change. While many organizations have adopted DevOps

methodologies to accelerate application delivery and im-

prove code quality, Software Delivery Management ex-

tends further to solve a greater challenge.

A Software Delivery Management practice enables effi-

cient, continuous delivery of software across all teams,

tools and technologies while integrating wider business

functions. A successful Software Delivery Management

framework links all teams and tools with a common data

model and better visibility, to provide a platform from

which it can all be managed and measured. This common

data model enables unified processes, leading to im-

proved collaboration across all teams. The end result is to

measure and understand how software development and

delivery effort translates into value for the customer and

the business.

It’s important to keep in mind that a Software Delivery

Management practice does not revolve around a single

tool. Software Delivery Management provides a frame-

work for bringing together the data from multiple tools

into a common platform. With access to a common data

model, an organization’s ability to effectively and effi-

ciently manage the software delivery lifecycle is trans-

formed. To achieve this, though, means everyone needs

access to common data via common connected processes.

 19

The end result is universal insights into data associated

with software delivery and the ability for all functions

within the organization to collaborate more effectively,

based on that data.

Removing Silos with Software
Delivery Management

As mentioned, Software Delivery Management links all

teams and tools to a common data layer to enable better

visibility for all. For many years, businesses have empha-

sized the need to break down silos and empower teams.

However, one of the major hurdles to breaking down silos

has been the inability for teams to share insights across

multiple and disparate technology platforms.

With dozens of tools available for different business

functions, it is nearly impossible for teams to collaborate

if they are each deeply entrenched within a different

technology platform. These challenges were highlighted

in a 2020 survey conducted by Accelerated Strategies

Group and commissioned by CloudBees. Eighty-four per-

cent of respondents said the inaccessibility of infor-

mation got in the way of their ability to do their jobs

and/or make data-driven decisions. Respondents at-

tributed this to organizational and functional silos im-

peding the free flow of information to IT practitioners

and senior leadership.

For example, the sales organization will be very familiar

with the company’s customer relationship management

(CRM) platform and all of its reporting capabilities. They

likely have weekly, if not daily, meetings that are cen-

tered around metrics pulled from the CRM system. Like-

wise, the development team will have daily stand-up

meetings in order to check on progress and track goals.

You might see the problem emerging already. The sales

 20

team is deeply engrossed in their own tools and reports

while development teams understand processes based on

the information and reports from their preferred tools.

Getting these groups to collaborate on shared objectives

is nearly impossible because they have very different

roles – and they rely on completely different sets of data,

from completely different tools. However, one is selling

what the other produces - so they are, indeed, connected.

Adopting a Software Delivery Management framework al-

lows teams from across the business to align their goals

and resources based on insights derived from unified

data. A successful Software Delivery Management prac-

tice provides teams the freedom to use the best tools for

the job at hand, while also enabling them to collaborate

across the business. Software Delivery Management is an

imperative in the era of continuous integration and con-

tinuous delivery.

Understanding the Goals of a Software
Delivery Management Framework

The goal of Software Delivery Management is to unify the

process of software delivery and align it with business ob-

jectives. As already stated, a Software Delivery Manage-

ment practice also fosters collaboration across teams in

all functions of the organization. To implement Software

Delivery Management, organizations require a Software

Delivery Management platform to collect and hold uni-

fied data, provide insights for all and enable cross-team

collaboration.

A Software Delivery Management practice implemented

around a Software Delivery Management platform gives

stakeholders the visibility into the software delivery pro-

cess they need to make informed business decisions.

Through role-based dashboards and reporting

 21

capabilities, business stakeholders will be able to better

understand the connection between DevOps, software

delivery and business results.

The Four Pillars of Software
Delivery Management

As we have mentioned, Software Delivery Management is

not a single product or offering. A successful Software

Delivery Management framework requires both technol-

ogy and a new way of rallying teams around a unified mis-

sion. Software Delivery Management is based on four pil-

lars or principles. These four pillars build upon each

other and form the foundation for a Software Delivery

Management practice. The four pillars are as follows:

1. Common Data

A common data model is the foundational piece that

enables Software Delivery Management. Teams

across the entire organization must have the data

from their line-of-business feed into a shared data

model.

2. Universal Insights

The common data model enables shared insights across

teams. Everyone within the company is able to access

and understand the same data, set specific goals for

their areas based on that data, gain visibility into pro-

ject status and measure outcomes.

3. Common Connected Process

Once everyone is able to view the same data, it is easier

for teams to work on a single, shared mission. Processes

from different teams begin to be aligned as there is full

insight into the project progress.

4. All Functions Collaborating

Everybody across the organization is able to work to-

gether on shared goals. It is an iterative process of

 22

continual improvement, where goals are established,

work proceeds and outcomes are measured. Goals are

then realigned based on market and customer feedback.

The next four chapters will go into greater depth on each

of these fundamental pillars.

 23

Chapter 3

Pillar 1: Common Data

Inside

» Understanding the importance of a common data

model

» Defining a common data model

» Tackling the challenges of creating a common data

model

» Setting the foundation for Software Delivery Man-

agement

The first pillar of an effective Software Delivery Manage-

ment framework requires an effective data model. The

ability to centrally manage key business data helps form

the base that allows cross-functional teams to have uni-

versal visibility into the process and collaborate more ef-

ficiently. If you do not have this centralized data model,

important information remains locked within domain-

specific tools.

In this chapter we will discuss the central role of a com-

mon data model when planning your Software Delivery

Management framework. We will discuss what it means

to unlock siloed data from across specific applications

and how this centralized data can serve as a rallying point

for multiple IT and business teams.

The Need for a Common Data Model

It is typical for a single DevOps organization to use doz-

ens of different tools to support different aspects of the

software development and delivery lifecycle. Tradition-

ally, these different tools have resulted in silos of data.

 24

For example, teams working with Jira for bug tracking

aren’t necessarily going to understand the data coming

from a configuration management tool like Chef or Ansi-

ble. Expecting DevOps teams to learn the outputs of doz-

ens of applications does not make business sense and

shifts their focus away from addressing customer needs.

By providing a common data model that can decipher the

context of all of this data, organizations enable all con-

stituents - including developers, sales executives and

marketers - better visibility into the software delivery

process and allow them to effectively collaborate. The re-

sult is an organization focused on driving the adoption of

their products and features to their customers, knowing

how customers are using them and how the development

effort translates to ROI for the business.

Defining a Common Data Model

A common data model is a data repository where data

from all the business applications and DevOps tools can

be ingested and made accessible in a consistent way. A

common data model forms the foundation of a Software

Delivery Management practice. This data strategy helps

to unify data across all your development and business

processes, providing teams the visibility they need to

truly collaborate.

Traditionally data is locked within domain-specific appli-

cations and platforms. Software developers have little in-

sight into the data that customer success teams have. De-

velopers cannot easily look at customer reviews and feed-

back on recently released features. Time and effort is

spent trying to find and understand these applications in

order to extract that data from business applications such

as CRM and other customer-facing tools. Likewise, cus-

tomer success teams do not know when new features will

become available or when the next update will be

 25

generally released. If a customer has a problem when the

new release goes out, the customer success team will

need to reach out to a variety of colleagues who can track

down that information and resolve the customer issue.

Time is critical in order to keep customers satisfied.

So how does the common data model fit within your or-

ganization’s business and an application model? Figure

3-1 helps to illustrate the inputs to the common data

model. As you can see, data from across the company fun-

nels into one common data model. It’s important to keep

in mind that this approach to common data doesn’t just

collect DevOps data; data from marketing, support, plan-

ning and other key teams are all also moved into the com-

mon data model.

Figure 3-1: The common data model brings data together from

across the entire business

In short, the common data model acts as the system of

record to democratize and share data that can be ac-

cessed by cross-functional teams across the business. The

ability to give teams access to key data from across busi-

ness silos gives stakeholders the context to make data-

driven decisions. Development teams have the context

related to features customers want, while marketing and

sales have visibility into when important features are

ready for release. Neither group needs to guess because

New Account

 26

they have access to the information. The common data

model provides teams with the data they need in a con-

text that they can understand.

Creating a Common Data Model

Creating a common data model requires thoughtful plan-

ning. There is not a universal language between business

tools – there are few standards, even between various

DevOps tools. The log data coming from a planning tool

is going to look very different from data that results from

application testing tools. To complicate matters, tools

outside of the DevOps organization, such as marketing

automation and CRM platforms, were never designed to

be understood by DevOps teams.

The first step in creating a common data model is to un-

derstand all of the tools that are used within the software

delivery process. This discovery phase doesn’t just in-

volve surveying DevOps teams. Instead, an organization

needs to understand the role of different tools and how

they work to form a software delivery tool chain. What

are the key data points that these tools contain?

While building out a Software Delivery Management

framework, organizations also need to understand the

tools that teams outside of the DevOps organization use.

For example, what are the critical marketing planning

tools and customer service tools? What does the critical

data look like within those applications?

As businesses identify key data points within each tool,

they must form a plan to connect that data with their

common data model. In addition, they must provide

enough context to make that data useful for other teams.

For example, the customer success team might constantly

focus on “Customer Health Score” and “Net Promoter

 27

Score,” but those metrics have little meaning to other

teams.

After companies understand their teams’ most important

applications and key data points, harmonizing data from

various domain tools will emerge as a challenge. Simply

coming up with a consistent term for “customer” may be

a challenge. Some applications will call a customer a “cli-

ent,” or a “customer,” while yet other applications might

just identify them by “business name.” Likewise, “build ,”

“release” and “deployment” may all mean the same thing

but will be labeled differently within applications. Fur-

ther complicating the matter, a team might have a spe-

cific definition that differentiates the “build” and “re-

lease,” but another team will have different definitions.

How can you have a common data layer when teams

within the same business are literally talking different

languages?

Consistently defining data across applications may ap-

pear simple, but as your Software Delivery Management

framework grows, you are going to need to think about

hundreds, if not thousands of words that need to be con-

sistently defined and understood by very different inter-

nal teams. It is especially critical to have a common un-

derstanding of business data no matter how that data is

being used. For example, both the sales team and the ac-

counting team need to have consistent data definitions.

Understanding Why a Common Data Model
is a Core Requirement

Remember, a common data model is critical to creating

the visibility needed for better collaboration in a Soft-

ware Delivery Management framework. The establish-

ment of a central data repository that contains key devel-

opment, application and business data enables your

 28

software delivery management team to achieve important

business and technical goals. Without rationalizing and

sharing critical data points and definitions, your organi-

zation will be forced to deal with fragmented and incon-

sistent data.

One of the primary benefits of adopting a Software Deliv-

ery Management framework is that it automatically cap-

tures and stores information in the common data model.

As a result of this automation, it is now possible to ena-

ble:

▪ Universal insights across IT and business

teams

▪ Connected processes and

▪ Collaboration between all functions across

your business.

This foundational data model is critical because each tool

within the DevOps tool chain has its own logging and re-

porting capabilities. To deliver insights across the entire

modern software value chain, the system must bring to-

gether data coming from teams in every business unit

across the organization.

 29

Chapter 4

Pillar 2: Universal Insights

Inside

» Recognizing the need for data alignment

» Benefiting from the power of common insights

» Delighting customers by leveraging universal in-

sights

Establishing a common data model is the first pillar when

creating your Software Delivery Management frame-

work– it sets the foundation for the remaining pillars.

Democratized data from the DevOps toolchain provides

the visibility to enable teams from across your business

the ability to align their goals and share ideas. It also pro-

vides you with the ability to have a shared vocabulary so

that teams can effectively communicate. However, data

itself does not drive value.

Data needs context and needs to be understood by teams

in order to help drive results. In this chapter, we will dis-

cuss the second pillar of a successful Software Delivery

Management framework – universal insights.

Understanding the Needs of
Different Teams

The insights that your Software Delivery Management

framework will provide to different teams will depend on

their role and what’s needed to accomplish the task at

hand. The needs of your management team will be very

different than your application security team. Likewise,

the way that different teams want to consume data will

vary. For example, a sales team may want insights to be

 30

built into a CRM platform, while other teams may prefer

importing the data into their tool of choice. On the other

hand, managers and executives may want easy-to-con-

sume dashboards that are customized to display the KPIs

that they care about most.

Defining Universal Insights

Universal insights provide the visibility that enable teams

across all functions to understand how key software de-

livery projects are progressing. Universal insights can

also provide data on how various features or releases are

being used by customers in production. Finally, universal

insights can provide visibility into the value returned to

the business from various software projects. Dashboards,

reports and ad-hoc data queries give employees the nec-

essary information to make informed decisions, in order

to align resources to drive the adoption of software prod-

ucts and features by customers and users.

Similarly, having these insights will help differentiate

your business from the competition. Teams will be able

to execute on projects more quickly, spot emerging user

trends and respond to changing customer expectations

when they share analytics into data that span across the

organization.

The Power of Universal Insights

Gaining insight from data is not a new concept. Data vis-

ualizations, business intelligence, analytics and ad-

vanced analytics have been hot areas of investment for

years, for businesses that want to create differentiation.

However, in nearly every case, these data insight projects

do not support the needs of all teams and functions

across the business.

 31

Giving all business stakeholders insights into the busi-

nesses and their specific jobs helps to align every team

with a common set of business goals. The requirement for

achieving the maximum business power from universal

insights is twofold:

1. Data must be presented in a way that is easy to

consume. For example, Dev and Ops teams may

want to view data related to development pro-

gress and security scan thresholds, while sales

and marketing leaders will want sales and reve-

nue data related to a software product to be pre-

sented within the CRM system.

2. Data needs context to provide maximum value.

Without providing additional meaning, data in-

sights might be interesting but will not drive suc-

cess. For example, DevOps teams should receive

sales and revenue information, but tying that data

directly to applications and development efforts

gives teams actionable information.

The impact of this insight will improve collaboration

across business and technology teams, support and oper-

ational groups, resulting in better business outcomes and

more satisfied customers.

Even executives who may not ordinarily get involved in

low-level details should be able to explore data and po-

tentially intervene if they see an emerging problem. For

example, because of experience, leadership may recog-

nize a problematic pattern before its consequences be-

come clear. They may, in effect, keep a project from fall-

ing behind schedule, prevent its going over budget or

save a promised feature that is critical to an important

customer by reallocating resources.

 32

How Universal Insights
Drives Business Success

Let’s look at the example of an employee in the role of a

customer success manager for a SaaS vendor. The job of

the customer success manager is to drive adoption of the

software, keep the customer happy and ultimately expand

use of the software within the account.

A key customer has several feature requests of varying

priorities. The client outlines the requirements with the

customer success manager and the need to have the soft-

ware work within the company’s current business pro-

cesses. The client is committed to fully migrating to the

vendor’s SaaS platform if the software can be tailored to

the company’s needs.

The success manager would normally have little insight

into the progress of the requests. Before bi-weekly cus-

tomer calls, the manager needs to send out emails, rec-

oncile spreadsheets and track down a half dozen co-work-

ers in order to provide the customer with an update. This

process is not only time-consuming, but it also gives the

manager no real-time insight. Information that was pro-

vided to the customer was at best several days old.

Because of these challenges, the SaaS vendor adopted a

Software Delivery Management approach. Now the man-

ager is able to track requests and feedback from across

her clients, on an up-to-the-minute basis. The manager

also has information that empowers her to have mean-

ingful conversations with development teams so they

have the context about the client’s requirements and

challenges the new feature will solve. Additionally, the

manager always has real-time insights into feature pro-

gress and status. The manager can confidently assure the

customer that its desired feature is on the way. This type

 33

of clear communication with customers drives customer

satisfaction, increases renewal rates and decreases churn.

One of the company’s universal principles - putting the

customer first - has been demonstrated to its clients. This

type of client-vendor relationship, powered through a

Software Delivery Management practice, is how the SaaS

vendor is working on differentiating itself from the com-

petition.

 34

Chapter 5

Pillar 3: Connected Business
Processes

Inside

» Seeing the importance of business processes
» Understanding the need to align processes
» The value of connecting processes

In the previous two chapters, we discussed the require-

ments to create a common data model and to gain needed

access to shared universal insights. While those are nec-

essary steps as you advance your strategy to create a Soft-

ware Delivery Management framework, connecting busi-

ness processes is where your business will begin to gain

significant value.

In this chapter, we will discuss the importance of busi-

ness processes and how integrating business processes

from across your organization can drive value. It’s im-

portant to remember that the first two pillars - a common

data model and shared universal insight - set the founda-

tion for connecting business processes.

The Importance of Aligning
Business Processes

Well-designed and well-executed business processes that

are aligned across an organization’s functions can differ-

entiate your business from your competitors. They enable

you to provide a unique and valuable product or service

to your customers. Reimagining business processes is

how born-in-the-cloud startups have disrupted industry

 35

stalwarts. If you look at unicorn startups, they surely rely

on technology, but at their foundation are business pro-

cesses that make it easier for customers to conduct busi-

ness. The technology enables the transaction, but tech-

nology alone is not the differentiation. Likewise, well-

aligned business processes that connect the various func-

tional groups in an organization, along with incorporat-

ing industry and customer experience, are how estab-

lished companies can and should quickly respond to

evolving customer expectations.

It’s likely that you haven’t considered the different busi-

ness processes that exist within your organization. You

may think of just a couple – like closing a deal (which in-

cludes everything from prospecting to closing, payment

and product delivery) or onboarding new employees.

However, there are dozens of business processes en-

trenched within each function of your organization. Busi-

ness processes range from product and customer research

to marketing, sales and support services to finance and

more. Each business process is supported by software –

whether it is a complex, customized customer relation-

ship management platform or a well-established Gantt

chart.

Some of these business processes are easily executed by

a single person within a team. That individual might not

even consider their task as a defined “business process.”

For example, accounts payable received invoices, checks

their validity, confirms the account and distributes funds.

On the other hand, other processes require an entire de-

partment, or even multiple departments, to coordinate

efforts.

 36

Let’s take the example of a major software release. Think

about the number of people and departments involved in

the processes of bringing this release to market. Everyone

from executive leadership to development, operations,

marketing, sales and legal must be involved. Although

you may have an overall process to ensure a timely re-

lease of the update, each department will have its own

business process to execute the needed work. Many of the

department-level tasks are supported with function-spe-

cific software packages and individually adopted best

practices.

Connecting Business Processes to
Meet Customer Expectations

When departments depend on their own disconnected

tools, that's when communication, deadlines and product

quality all suffer. In many cases, it’s as if different parts

of an organization are speaking different languages. At

the end of the day, this disconnection results in poor cus-

tomer experience and satisfaction. Customers don’t care

if a feature request is held up in testing or debugging, and

they don’t care if an update is ready but marketing is fi-

nalizing written materials – they simply want the en-

hanced capability.

Connecting and aligning the cross-functional business

processes is an essential element for establishing your

Software Delivery Management framework. Without con-

necting processes, it is impossible for different parts of

the organization to know how a project is progressing.

While it might be okay for a small, team-level process to

be siloed, departmental and, more importantly, business-

wide processes must be connected and aligned. If you are

trying to establish a common goal across your business,

you cannot rely on independent processes within each

team.

 37

Let’s continue the example of a major software update.

You may have biweekly leadership meetings between the

development, marketing and sales organizations to dis-

cuss the progress and customer requirements. Sales plans

will begin to go into process well before the release is

generally available. However, things change, and with

disconnected departmental processes, alerting teams to

those changes can be delayed by weeks. You may have

teams spending time on recently irrelevant work or,

worse yet, you may communicate inaccurate information

to partners, customers and prospects.

In addition to project change, organizations are con-

stantly tweaking business processes in a constant search

for better efficiencies, cost savings, improved services –

things that make your business successful. Connecting

business processes allows you to execute this change

across the organization in a predictable and planned

manner.

The Business Value of Connected and
Aligned Processes

The value of connecting and aligned business processes

is likely becoming clear – it is the foundation for efficient

and effective collaboration. While the first two pillars of

a Software Delivery Management framework align teams

on data and the understanding of that data, this third pil-

lar brings cross-functional alignment into everyday busi-

ness practices. In short, teams have the right infor-

mation, and they know what they are expected to do, how

to do it and when. By connecting and integrating pro-

cesses throughout the organization, your teams are uni-

fied around a common goal and a pathway to achieve that

goal. Ultimately, unifying business processes leads to

faster responses to customer requirements and better cli-

ent outcomes.

 38

Chapter 6

Pillar 4: All Functions
 Collaborating

Inside

» Creating the foundation for successful collab-

oration

» Satisfying customer needs by working together

» Seeing the value of collaboration

The final pillar of creating a Software Delivery Manage-

ment practice is to achieve departmental collaboration

across your organization. Collaboration is one of the

most important aspects of achieving market success. It is

clear that connecting software delivery with other de-

partments through unified data drives better collabora-

tion. This level of interdepartmental teamwork means

that everyone is working with the same data and has real-

time insight into software releases. This collaboration is

the keystone to accelerating time-to-market and faster

time-to-revenue. The ultimate beneficiary of working to-

gether are your customers, who will receive better sup-

port, higher-quality updates and faster turn-around on

feature requests.

In this chapter, we will focus on the final pillar of a suc-

cessful Software Delivery Management framework – all

functions across your business collaborating.

The Journey to Collaboration

Many businesses have long strived to improve collabora-

tion between departments. A business leader may hire

 39

consultants, conduct workshops and rethink their organ-

izational structure in an effort to increase collaboration.

The key to successful collaboration is two-fold: you must

have teams fully embrace a common goal, and you need

to implement technology that makes working together

easier.

In the previous three chapters, we discussed the first

three pillars to build a successful Software Delivery Man-

agement framework. These building blocks help organi-

zations ready themselves for meaningful collaboration

that will benefit the bottom line. The following is a brief

explanation of how the first three pillars help organiza-

tions collaborate across teams:

▪ Common Data: The common data model brings to-
gether data that is typically held within domain-
specific tools. This data is normalized so those in-
sights can be gleaned.

▪ Common Insights: Giving teams access to critical

business data in a way that is easily consumed al-
lows them to make fact-based decisions. In addi-
tion, providing analytical insights into tools and
processes that are normally held within different
departments gives teams the ability to collaborate
more intelligently.

▪ Connected Processes: By connecting business pro-

cesses that are typically held within separate de-
partments, teams are able to execute more
quickly and eliminate redundancies.

Standing up each of these pillars requires teamwork. For

example, consider the process of creating a common data

model. Each team needs to work together to share and

understand the different tools they use, the types of data

that are important to them and how they can contribute

their data to a shared repository. In some cases, teams

 40

might be reluctant to share their data – they are accus-

tomed to being judged on their team performance and

don’t want to spend time on a shared effort. In addition,

teams might be concerned that their data will be misused

or misconstrued, or that the shared data will not reflect

their reality. To overcome these challenges, it’s im-

portant to align everyone on a common set of goals and

provide metrics that can show how their efforts contrib-

ute to those goals.

The Business Imperative of Collaboration

Every business unit is able to achieve some level of col-

laboration between departments. As you create your Soft-

ware Delivery Management practice, the value of that

collaboration will accelerate. In addition, a Software De-

livery Management practice will help bridge the gap be-

tween software and business teams. Software and busi-

ness leadership are able to look at the same data and have

enough context to understand data that is typically siloed

within functional tools. Business leaders are also not de-

pendent on software leaders for updates and reports. In-

stead, business teams are able to get up-to-date visibility

into the software process and progress in ways that they

can understand.

Creating Positive Customer Outcomes

Delivering transparency between different parts of your

business means that teams can focus on customer and

business growth. Let’s look at the example of bringing a

new capability to market.

Some departments will already have a cadence and famil-

iarity with teamwork - for example, sales and marketing

or development and operations. However, think about the

benefits of marketing working closely with product

 41

management. What if marketers had the ability to see in

real-time the progress of a new release? Marketers could

better time their efforts and tailor their campaigns to

match the evolving efforts of the product team. In addi-

tion, if customer success teams have insight into product

development, they can share, as appropriate, those in-

sights with customers. Furthermore, by collaborating

across departments, customer feedback can be better in-

corporated earlier in the development process. Creating

a platform that encourages collaboration across develop-

ment, operations and business has the potential to trans-

form the way organizations create synergy and context to

support the need for flexibility and agility.

 42

Chapter 7

Five Steps to Establishing a
Software Delivery

Management Framework

Inside

» Understanding your current state
» Aligning stakeholders

» Achieving buy-in from business and technical

teams

Creating your Software Delivery Management framework

is not an overnight project. The journey to rethinking

your software value chain requires careful planning. To

help you think through your approach to Software Deliv-

ery Management, in this chapter we share five steps to

get started.

Step 1: Align Teams on Software Delivery
Goals

Before you can plan your future, you have to understand

the goals, requirements and expectations of each constit-

uent within your organization. It’s important to remem-

ber that the goal of a Software Delivery Management

framework is to help align all teams on a common set of

goals; therefore, you must understand the challenges

that different teams face. It’s important to bring together

team leadership and begin by asking these questions:

▪ What are the common bottlenecks that slow down
projects?

 43

▪ What do other teams within the organization not
realize about your processes? And what infor-
mation would help them?

▪ How do you ensure that customers are happy and
that their needs are met?

▪ How do you collaborate with teams in different
parts of the business?

▪ Do you have the structure that allows you to move
quickly?

By understanding where you are and what’s working you can

understand what you need for the future.

Step 2: Build a Common Data Framework
that Can Adapt to Business Needs

The first pillar of creating a Software Delivery Manage-

ment framework is to create a common data model. As a

part of your planning process, you must begin to under-

stand the types of data that are important for different

teams within your organization. It’s important to remem-

ber that this data model must be able to adapt as teams

utilize new tools and rely on different types of data. As

you begin to plan your common data model, you must

start to understand the following:

▪ What types of data does your team manage – for
example structured, unstructured, machine data?

▪ Do you have a single source of truth within your
data or does your team need to reconcile data
across several sources to normalize it?

▪ If you had access to additional data from different
teams, what would be the most important infor-
mation?

 44

▪ Do you currently have data on how your work di-
rectly drives customer success?

▪ Do you have a standardized process for incorpo-
rating new tools and data sources into your data
model?

Step 3: Giving All Teams the
Insight They Need

Although some teams may be reluctant to share their data

with other parts of the organization, the common data

model provides the foundation to provide universal in-

sights. Providing analytics-based insights doesn’t mean

publishing generic dashboards and reports. Teams must

receive data that is both easily understood and helpful.

To deliver useful insight that can improve the way teams

work together, you should start by asking the following

questions:

▪ How can data insights be embedded into a team’s
current workflow?

▪ Do your existing tools have plugins and interfaces

that allow insights to be pushed down to users?

▪ What are the missing data points that teams need

to respond to customers (internal and external)
more quickly and with greater precision?

▪ Who, within your organization, possesses both

the business context and technical know-how to
lead your universal insights efforts?

▪ Are you providing data that is actually improving

business results? How are you measuring the im-
pact of your efforts?

 45

Step 4: Understanding and Connecting
Processes Across the Business

As you advance your Software Delivery Management

practice, you need to begin to connect the way teams

work. For some teams, processes may have already begun

to integrate. For example, many successful companies

have built DevOps organizations to connect development

and operations processes. However, other elements of the

software development chain still live in isolation. As you

begin to connect business and technical processes, you

need to think about the following questions:

▪ How does each team approach a new project?

▪ Are there common bottlenecks that can be elimi-
nated by integrating a process with another
team’s workflow?

▪ Are there processes that are duplicated multiple
times by different teams?

▪ How can you involve downstream processes ear-
lier in a project to increase speed-to-market?

▪ How can teams that regularly interact with cus-
tomers infuse customer feedback throughout the
software delivery process?

Step 5: Drive Collaboration Across
the Business

The ultimate goal of creating your Software Delivery

Management practice is to drive collaboration across

your business. Achieving departmental collaboration will

not happen overnight. As you look to increase collabora-

tion across teams, it is important to think about these

questions during the process:

 46

▪ What teams are open to collaborating and where
can you see fast and meaningful results? For ex-
ample, aligning product management with mar-
keting can yield significant results.

▪ As you begin to break down team processes, are
there obvious points of collaboration? It’s likely
that marketing and sales are already linking pro-
cesses as they approach customers and prospects.

▪ What technical barriers exist for collaboration?
Do you have the tools in place to allow for collab-
oration between functional teams?

▪ Do you have processes in place to measure the im-
pact of collaboration? How are you defining suc-
cessful collaboration?

 47

Chapter 8

Best Practices for Successful
Software Delivery

Inside

» Rallying teams to drive change
» Align goals across teams
» Improving processes to drive better business and

customer outcomes

Creating a Software Delivery Management framework and

executing on each pillar requires changes to both corpo-

rate culture and the way teams create and evaluate pro-

cesses. In this chapter, we break down best practices into

two major categories: change management and continu-

ous improvement. It’s important to remember that your

Software Delivery Management practice will be an ongo-

ing effort to improve collaboration, customer outcomes

and, ultimately, the bottom line.

Best Practices for Change Management

Change is difficult, and even the most well-meaning

teams within an organization might be resistant to it.

Change management is an approach to planning and ex-

ecuting a transformation of your organization’s goals,

processes and technology. Creating a successful Software

Delivery Management practice requires you to think

about how you will promote change management across

teams. Organizations that are already seeing positive re-

sults through their Software Delivery Management ef-

forts have used the following three change-management

best practices:

 48

▪ Incremental change, rather than a rip and replace

approach. It’s important to change team pro-

cesses gradually. You need to recognize that

teams have created procedures based on their ex-

perience and expertise.

▪ Quick wins help to build enthusiasm for change.

By exhibiting the value of increased collaboration

and its impact on business results, you will get

buy-in. For example, can you easily connect prod-

uct management activities with customer feed-

back received by customer success teams?

▪ Institutional alignment helps rally everyone

around a common set of goals. Although each

team might be evaluated based on functional con-

siderations, it’s important to connect each team’s

role to organizational goals.

Best Practices for Continuous Improvement

Customer requirements, market expectations and com-

petitive offerings are always changing. Therefore, to es-

tablish long-term success, the business must plan for

continuous improvement. Continuous improvement is a

practice of ensuring that business and technical pro-

cesses and practices are as efficient and effective as pos-

sible. Along with other processes, your Software Delivery

Management framework must evolve and improve. As you

apply continuous improvement methodologies to your

Software Delivery Management practice, it’s important to

keep in mind the following three continuous improve-

ment best practices:

▪ Evaluate toolsets on an ongoing basis to make

sure teams have access to best-of-breed tools

 49

while eliminating tool redundancies. In addition,

continuously ask teams what types of new data

would be helpful for them and find ways to deliver

insights from existing tools.

▪ Measure the impact of your Software Delivery

Management practice. It is important to review

key performance indicators (KPIs) to understand

how process changes are affecting the business.

At the same time, think about whether you are

capturing the right KPIs and how you can share

success across teams.

▪ Rethink processes based on your evaluation of

KPIs, team and customer feedback. Adopt a regu-

lar cadence to evaluate business and technical

processes to find efficiencies and areas where im-

proved collaboration will positively impact cus-

tomers.

01
10

00
10

11
00

10
10

01
01

01
00

10
10

10
10

11
01

10
10

1001010101011011010100

01
00

10
10

10
10

11
01

10
10

10
01

01
10

01
01

0

10
11

01
01

00
10

11
00

10
10

01
01

00
10

11
00

10
10

01
01

00
10

11
00

10
10

11
00

10
10

01
10

00
10

11
00

10
10

01
01

01
00

10
10

10
10

11
01

10
10

11

$

Successful businesses are rethinking their
software delivery process through the
adoption of a Software Delivery Management
framework. This new approach gives you the
technical underpinning to enable collaboration
throughout your business. Prepare your
teams to collaborate around common data
and a shared set of goals that are focused on
customer and business success.

Outstanding software sets businesses apart from
their competition. Aligning teams on a common set
of goals and increasing visibility and communication
across teams are the keys to creating
excellent applications that meet
customer expectations.

Michael Baldani is a senior product marketing manager at CloudBees. He
has spent the last 20 years in software and SaaS solutions to help customers
overcome the challenges they face in their daily roles.

Brian Dawson is the director of product marketing at CloudBees and a DevOps
evangelist and practitioner with a focus on agile, continuous integration
(CI), continuous delivery (CD) and DevOps practices. He has over 25 years
as a software professional in multiple domains including quality assurance,
engineering and management, with a focus on optimization of software
development. Brian has led an agile transformation consulting practice and
helped many organizations implement CI, CD and DevOps.

CloudBees, Inc.
4 North Second Street | Suite 1270
San Jose, CA 95113
United States
www.cloudbees.com | info@cloudbees.com

Published by Hurwitz & Associates

AUTHORS

This book will explain:
• How insights can be delivered with context to make them actionable
• The business impact of connecting business processes
• The best practices for succeeding with Software Delivery Management

9 781949 260144

51495>
ISBN 978-1-949260-14-4

$14.95

