
1

Benefits of
Secure Guardrails

SECURE GUARDRAILS have emerged as a vital tool for
standardizing security measures, enabling security teams to furnish
clear guidelines to development and engineering teams across the
software development lifecycle (SDLC). By aligning with shift-left
practices, guardrails establish specific frameworks and security
protocols to safeguard software against vulnerabilities, while also
enforcing compliance and policy adherence. This approach not only
enhances developer satisfaction and accelerates application delivery
but also earns approval from security teams, thereby reducing the
risk of catastrophic breaches in production environments.

Within the Software Development Life Cycle (SDLC) model,
guardrails ensure that every step integrates security, compliance,
and policy measures. This involves conducting diverse risk
assessments and integrating tools such as Static Application
Security Testing (SAS), Software Composition Analysis (SCA), and
Dynamic Application Security Testing (DAST) into build pipelines.
Additionally, AI-powered guardrail tools offer real-time support
to developers by suggesting alternatives when code fails to meet
specifications and providing deeper insights into vulnerabilities.

In 2024, Techstrong Research conducted a poll
among its community of security, cloud, and
DevOps professionals to gauge their perspectives
on secure guardrails within software development
environments.

The study aims to assess the effectiveness of automated tools and
policies in guiding developers towards secure coding practices,
while also examining the balance between automation and
developer discretion in mitigating security risks.

Does your organization
currently implement secure
guardrails in the software
development process?
The vast majority either extensively
use or are using guardrails across
all projects or is in the process of
implementing them for certain projects
(69%). For those not implementing them
yet, many within that group plan to do
so in the near future, while the rest are
unconvinced, with under a third (30%)
not planning to implement guardrails.

31%

12%

10%

16%

30%

YES, EXTENSIVELY ACROSS ALL PROJECTS

YES, BUT ONLY FOR SPECIFIC PROJECTS

IN THE PROCESS OF IMPLEMENTATION

NO, BUT PLANNING TO IN THE NEAR FUTURE

NO, AND NO PLANS TO IMPLEMENT

2

Benefits of Secure Guardrails

The respondents’ different roles reflect the breakdown among a
typical DevOps organization that has implemented CI/CD, with
security engineers (18%), DevOps engineers (19%), platform
engineers (6%), and software developers (16%) representing
the majority (59%). The different roles reflect how the different
stakeholders share security, compliance, and policy concerns that
GuardRails are designed to address, aiming for improved
business outcomes overall.

TECHSTRONG RESEARCH ANALYST VIEW
The role guardrails play in DevOps teams’ DevSecOps and across
the SDLC, focusing on enhancing security, compliance, and
policy orchestration from the outset of the development cycle,
is widely acknowledged. However, despite significant evolution,
including advancements in automation and AI, a degree of
awareness and challenges persist to achieving consistent and
effective implementation.

Guardrail design requires a delicate balance.
While they should offer actionable insights and
recommendations, they must not overly restrict or
impede developers’ production process.

Excessively restrictive guardrails can lead to an abundance
of false positives, causing friction for developers and slowing
down production due to an overwhelming number of rules and
vulnerabilities.

Conversely, ineffective security policies provide little value when
critical vulnerabilities emerge in production. Addressing severe
vulnerabilities discovered in production often requires more than
just patching code; it may necessitate reconfiguring applications
without disrupting production — a task that adds extra workload
for developers and security teams. Moreover, security gaps in
production can be exploited by attackers, posing risks to customer
security and damaging the organization’s reputation. Fortunately,
security guardrail performance is improving.

Guardrails’ core principle revolves around empowering engineers
to adopt a proactive mindset, emphasizing early intervention in
the development process. Using guardrails, software engineers
and developers are freer to create code and applications that

How effective do you find secure
guardrails in preventing security
vulnerabilities in your projects?
Guardrails are predominantly accepted
as useful for security, as 89% deemed
them effective, ranging from 3 to 5 on
a scale of 1 to 5. Still, under a quarter
of those surveyed gauged guardrails
as “highly effective,” indicating that
work must be done to both improve
functionality and educate the
community about their value.

24%

31%

34%

5%

7%

HIGHLY EFFECTIVE

EFFECTIVE

SOMEWHAT EFFECTIVE

MINIMALLY EFFECTIVE

NOT EFFECTIVE

What are the biggest challenges
you face in implementing
secure guardrails within your
development process?
Lack of awareness and understanding,
along with technical challenges
associated with guardrail adoption,
collectively represent the largest
challenges, at 25% and 18% respectively.
Tied with concerns over technical
difficulties are cost constraints.

25%

18%

18%

15%

13%

12%

LACK OF AWARENESS/UNDERSTANDING

TECHNICAL DIFFICULTIES IN INTEGRATION

COST CONSTRAINTS

LACK OF SUITABLE TOOLS

RESISTANCE FROM DEVELOPMENT TEAMS

OTHER

3

Benefits of Secure Guardrails

POWERED BY

FACEBOOK-F twitter LINKEDIN-INwww.techstrongresearch.com

do not impede production cadences by being too restrictive, creating
too many false positives, or inundating the developers with too many
vulnerabilities to manage. Additionally, security guardrails enable
security teams to easily set policies, automate security rules, and monitor
and report compliance.

Recent advancements such as secret scanning and AI-enabled
assistance offer promising enhancements. Secret scanning addresses
concerns about secret disclosure, while AI streamlines vulnerability
detection and remediation processes. Instead of receiving a notification
when a PR is raised, developers now have the option to engage with
AI-enabled assistance.

17%

25%

22%

11%

26%

MAINTAIN THE CURRENT LEVEL OF SECURE GUARDRAIL USE

EXPAND THE USE OF SECURE GUARDRAILS

ENHANCE CAPABILITIES OF EXISTING SECURE GUARDRAILS

REDUCE RELIANCE ON SECURE GUARDRAILS

NO PLANS RELATED TO SECURE GUARDRAILS

What are your organization’s
plans regarding adoption
or enhancement of secure
guardrails within the next
12 months?
The majority plans to continue using
or increase their usage of secure
guardrails, at 64%. However, a sizable
minority, 37%, either plan to reduce
their use (11%) or have no plans to adopt
secure guardrails. Their hesitancy
indicates concerns over their ease of
implementation, effectiveness, and
other perceived downsides.

What features do you prioritize
in a secure guardrail solution?
Ease of integration and adoption
remain the highest priorities cited
(32%), reflecting perceived technical
challenges in adopting and integrating
guardrails. As the breakdown in
priorities does not differ significantly,
this trend indicates a range of important
functions that guardrails offer.

10%

21%

32%

28%

18%

13%
SUPPORT FOR A WIDE RANGE OF PROGRAMMING
LANGUAGES AND FRAMEWORKS

CUSTOMIZABILITY FOR SPECIFIC PROJECT NEEDS

EASE OF INTEGRATION INTO EXISTING WORKFLOWS

COMPREHENSIVE COVERAGE OF SECURITY VULNERABILITIES

MINIMAL IMPACT ON DEVELOPMENT SPEED

ACTIONABLE INSIGHTS AND RECOMMENDATIONS

Key Takeaways

1. Most organizations
consider security, compliance,
and policy guardrails as
effective ways to implement
and orchestrate shift-left
practices.

2. Guardrails can scan,
analyze and offer fixes for
developer code that does
not conform to policy, is not
compliant, or has critical
vulnerabilities.

3. Automation is an essential
feature that guardrails
must offer. It offers security
monitoring and fixes, often
with AI for improved and
faster remediation, but
developers should retain the
freedom to reconfigure code
manually when required or
desired.

4. A guardrail’s reach should
include comprehensive
shift-left capabilities,
customization, and easy
integration with existing
frameworks, libraries, and
secrets.

5. Guardrails must offer ease
of use and adoption so as not
to interfere with developer
productivity while operations
engineers should be able
to seamlessly implement,
manage and add new policies,
frameworks, and libraries.

https://techstrongresearch.com
https://www.facebook.com/Techstrong-Research-278727773961536
https://twitter.com/techstrongrsrch
https://www.linkedin.com/company/techstrongresearch

	Techstrong Research:
	Page 3:

	Facebook:
	Page 3:

	Twitter:
	Page 3:

	LinkedIn:
	Page 3:

